置富产业信托(0778.HK)涨4.7% 总市值135亿港元
置富产业信托(0778 HK)涨4 7%,报6 91港元,总市值135亿港元。置富产业信托宣布,已订立买卖协议,以8800万新加坡元(约5 01亿港元)收购新加
慢sql分析,总行数80w+,通过监控分析慢SQL, 某个查询耗时超1s。
比较特殊的是:其中有个字段info是jsonb类型,写法:info::json->"length" as length
同样的查询条件查这个字段和不查这个字段相差3.3倍
(资料图片)
那看来就是json取值拖垮了查询的性能。
取jsonb中的字段有多种取法(如下), 那他们有什么区别呢,对性能有啥影响呢?
info::json->"length"info::jsonb->"length"info::json->>"length"info::jsonb->>"length"info->"length"info->"length"info->>"length"info->>"length"二、对比2.1 输出类型对比查询不同写法的类型:
select info::json->"length" AS "info::json->", pg_typeof(info::json->"length" ) ,info::jsonb->"length" AS "info::jsonb->" , pg_typeof(info::jsonb->"length" ),info::json->>"length" AS "info::json->>" , pg_typeof(info::json->>"length" ),info::jsonb->>"length" AS "info::jsonb->>" , pg_typeof(info::jsonb->>"length"),info->"length" AS "info->" , pg_typeof(info->"length" ),info->"length" AS "info->" , pg_typeof(info->"length" ),info->>"length" AS "info->>" , pg_typeof(info->>"length" ),info->>"length" AS "info->>" , pg_typeof(info->>"length" )from t_test_json limit 1;
结果
info::json-> | pg_typeof | info::jsonb-> | pg_typeof | info::json->> | pg_typeof | info::jsonb->> | pg_typeof | info-> | pg_typeof | info-> | pg_typeof | info->> | pg_typeof | info->> | pg_typeof --------------+-----------+---------------+-----------+---------------+-----------+----------------+-----------+--------+-----------+--------+-----------+---------+-----------+---------+----------- 123.9 | json | 123.9 | jsonb | 123.9 | text | 123.9 | text | 123.9 | jsonb | 123.9 | jsonb | 123.9 | text | 123.9 | textttui
分析小结
->> 输出类型为text->输出到底为何得看调用它的数据类型,比如:info类型是jsonb, 那么info->"length"为jsonb类型::json、::jsonb起到类型转换的作用。info本来就是jsonb类型,info::jsonb算无效转换,是否对性能有影响,待会验证2.2 性能对比jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info::json->"length" AS "info::json->", pg_typeof(info::json->"length" ) jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.04 rows=1 width=36) (actual time=0.028..0.028 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..30.62 rows=750 width=36) (actual time=0.027..0.027 rows=1 loops=1) Planning time: 0.056 ms Execution time: 0.047 ms(4 rows)jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info::jsonb->"length" AS "info::jsonb->" , pg_typeof(info::jsonb->"length" )jihite-> from t_test_json limit 1jihite-> ; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.017..0.017 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.015..0.015 rows=1 loops=1) Planning time: 0.053 ms Execution time: 0.031 ms(4 rows)jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info::jsonb->"length" AS "info::jsonb->" , pg_typeof(info::jsonb->"length" )jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.010..0.010 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.009..0.009 rows=1 loops=1) Planning time: 0.037 ms Execution time: 0.022 ms(4 rows)jihite=> jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info::json->>"length" AS "info::json->>" , pg_typeof(info::json->>"length" )jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.04 rows=1 width=36) (actual time=0.026..0.027 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..30.62 rows=750 width=36) (actual time=0.025..0.025 rows=1 loops=1) Planning time: 0.056 ms Execution time: 0.046 ms(4 rows)jihite=> jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info::jsonb->>"length" AS "info::jsonb->>" , pg_typeof(info::jsonb->>"length")jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.012..0.012 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.011..0.011 rows=1 loops=1) Planning time: 0.053 ms Execution time: 0.029 ms(4 rows)jihite=> jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info->"length" AS "info->" , pg_typeof(info->"length" )jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.014..0.014 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.013..0.013 rows=1 loops=1) Planning time: 0.052 ms Execution time: 0.030 ms(4 rows)jihite=> jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info->"length" AS "info->" , pg_typeof(info->"length" )jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.013..0.013 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.012..0.012 rows=1 loops=1) Planning time: 0.051 ms Execution time: 0.029 ms(4 rows)jihite=> jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info->>"length" AS "info->>" , pg_typeof(info->>"length" )jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.012..0.013 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.011..0.011 rows=1 loops=1) Planning time: 0.053 ms Execution time: 0.030 ms(4 rows)jihite=> jihite=> EXPLAIN ANALYSEjihite-> select jihite-> info->>"length" AS "info->>" , pg_typeof(info->>"length" )jihite-> from t_test_json limit 1; QUERY PLAN --------------------------------------------------------------------------------------------------------------- Limit (cost=0.00..0.03 rows=1 width=36) (actual time=0.012..0.013 rows=1 loops=1) -> Seq Scan on t_test_json (cost=0.00..23.12 rows=750 width=36) (actual time=0.011..0.011 rows=1 loops=1) Planning time: 0.053 ms Execution time: 0.029 ms(4 rows)
从执行耗时(Execution time)分析小结
执行了类型转换 jsonb->json,转换性能(0.46ms)显然低出不转换(0.3ms)
三、优化把查询字段:info::json->"length" 改为info->>"length",减少类型转换导致性能的损耗。
四、待调查4.1 同类型转换是否影响性能字段本身是jsonb, 进行强转::jsonb 是否对性能造成影响,还是在执行预编译时就已被优化
从大量数据的压测看,转换会对性能有影响,但是不大
4.2 如何分析函数的耗时在explain analyze时,主要分析了索引对性能的影响,那函数的具体影响如何查看呢?
五、附5.1 json、jsonb区别jsonb 性能优于jsonjsonb 支持索引【最大差异:效率】jsonb 写入时会处理写入数据,写入相对较慢,json会保留原始数据(包括无用的空格)推荐把JSON 数据存储为jsonb
5.2 postgresql查看字段类型函数pg_typeof()
5.3 性能分析指令如果您有一条执行很慢的 SQL 语句,您想知道发生了什么以及如何优化它。EXPLAIN ANALYSE 能够获取数据库执行 sql 语句,所经历的过程,以及耗费的时间,可以协助优化性能。
关键参数:
Execution time: *** ms 表明了实际的SQL 执行时间,其中不包括查询计划的生成时间
5.4 示例中的建表语句# 建表语句
create table t_test_json( id bigserial not null PRIMARY KEY, task character varying not null, info jsonb not null, create_time timestamp not null default current_timestamp);
# 压测数据
insert into t_test_json(task, info) values("1", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("2", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("3", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("4", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("5", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("6", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("7", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("8", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("9", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("10", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("11", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("12", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("13", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("14", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("15", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("16", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("17", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("18", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("19", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");insert into t_test_json(task, info) values("20", "{"length": 123.9, "avatar": "avatar_url", "tags": ["python", "golang", "db"]}");5.5 示例中的压测脚本
import timeimport psycopgdbname, user, pwd, ip, port = "", "", "", "", "5432"connection = "dbname=%s user=%s password=%s host=%s port=%s" % (dbname, user, pwd, ip, port)db = psycopg.connect(connection)cur = db.cursor()ss = 0lens = 20for i in range(lens): s = time.time() sql = """ select id, info::json->"length" as length from t_test_json order by id offset %s limit 1000 """ % (i * 1000) #print("sql:", sql) cur.execute(sql) rev = cur.fetchall() e = time.time() print("scan:", i, e - s) ss += (e - s)print("avg", ss / lens)
关键词:
Copyright 2015-2023 港澳艺术网 版权所有 备案号:京ICP备2023022245号-31 联系邮箱:435 226 40 @qq.com